Skip to main content

Doctoral Dissertation Presentation: Sumedha Dahl

ECE PhD Candidate Sumedha Dahl to present her dissertation The Effect of Radiation on Memristor-Based Electronic Spiking Neural Networks on Wednesday, June 10.

Spiking neural networks are designed to learn spatio-temporal patterns representing 25 and 100-pixel characters. Two-terminal resistive memory devices (memristors) are used as synapses to manipulate conductivity paths in the network. Spike-timing-dependent plasticity (STDP) learning behavior results in pattern learning and is achieved using biphasic shaped pre- and post-synaptic spikes. A TiO2 based non-linear drift model in Verilog-A is used to implement memristor behavior and is modified to include experimentally observed effects of state-altering, ionizing, and off-state degradation radiation on the device. Effects of state-altering radiation on the STDP learning rule, system stability, and pattern learning ability of the spiking neural network are observed.

In general, radiation interaction events distort the STDP learning curve undesirably, making the connection between afferents stronger by increasing the overall conductance of synapses. At lower short-term flux, the network is able to recover and relearn the pattern with consistent training. As the radiation flux increases, it can overwhelm the leaky integrate-and-fire (LIF) post-synaptic neuron circuit and make the network less stable. In the absence of pattern presentation, the radiation effects accumulate in the system and it never regains stability. On the other hand, the system was typically able to learn the pattern when in the presence of low flux, although some pixels may be affected due to stability issues. The impact of neuron “death” (disabled neuron circuits) due to radiation is also examined.

SPEAKER BIO | Sumedha Dahl is in her final year of study as a doctoral candidate in the Electrical and Computer Engineering Department at Boise State University. Dahl is supported in her doctoral research by ECE professor and advisor Dr. Kurtis Cantley and her supervisory committee, Drs. Campbell and Johnson.

This is a remote presentation scheduled for June 10 @ 12:30 pm - 2:30 pm MDT.  Tune in using this link https://www.boisestate.edu/graduatecollege/venue/https-boisestate-zoom-us-j-99572948638pwdcxzzk2hcnkxqqtjrdfqzcxozotgwut09/

Popular posts from this blog

ECE Seminar October 7: Printed Electronics for Air Force Applications

 The Electrical and Computer Engineering Department at Boise State University invites you to attend a free public seminar hosted on Zoom. This week's seminar features  Dr. Emily Heckman, a Senior Research Engineer at Air Force Research Laboratory. October 7 @ 10:30 am  https://boisestate.zoom.us/j/92994002201 ABSTRACT |    This talk will provide an overview of the field of printed electronics and ongoing research efforts in this area at the Air Force Research Laboratory Sensors Directorate. Printed electronics is a subset of additive manufacturing that uses technologies such as inkjet and aerosol jet printing and various other direct-write tools to additively print electronic devices on flexible, conformal and traditional substrate platforms. The AFRL Sensors Directorate is currently exploring this technology for application areas such as RF circuits and antennas, optoelectronic devices, sensors, and rapid prototyping. Challenges such as post-processing, repeat...

Electrical Engineering Research Team Develops New Transistor

The American Chemical Society (ACS) launched its new journal Applied Electronic Materials this year. One of Boise State’s own research teams landed a spot in the very first issue thanks to their novel work on a new type of transistor. “The new transistor opens up an exciting avenue of research,” says Dr. Kris Campbell, an associate professor in the Electrical and Computer Engineering Department. The featured work describes an optically-gated transistor developed in the Non-Volatile Memory research lab at Boise State University. Campbell’s research team includes undergraduate electrical engineering students Randall Bassine and Jeremy Astle and electrical and computer engineering doctoral student Faisal Kabir. Their unique work has led to a patent for Boise State University and has already been licensed by a company hoping to use the technology in their products. In this work, Dr. Campbell and her team demonstrate that a device comprised of alternating layers of sputtered amorphous c...

Dr. Maria Mitkova Honored by International Association for Advanced Materials

Maria Mitkova, a professor in the Electrical and Computer Engineering Department at Boise State University recently attended the 25th assembly of the Silver Jubilee Advanced Materials Congress held in Stockholm, Sweden. Mitkova was honored at the event, receiving the International Association for Advanced Materials (IAAM) medal. Dr. Maria Mitkova (left) Receives IAAM Medal Ea ch year IAAM recognizes high-impact research and innovations which promote the advancement of materials. Recognized by the IAAM for her outstanding contributions to the advancement of materials, Mitkova says she is proud to have received the award.   “I have great opportunities to develop my research in a college known for its innovation, inclusion, and integrity,” Mitkova says, “where I am surrounded by a wonderful team of faculty and students.” Dr. Mitkova’s current research interests are in the area of chalcogenide glasses and thin film microstructures.  Learn more about ongoing work onl...